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To date, PDF/Monte Carlo simulations, either in stand-alone codes or in hybrid
finite volume/PDF Monte Carlo programs, appear to have been mostly carried out
with cells of similar size. In many situations, such as capturing sharp gradients in a
flow field, fine grids or unstructured solution-adaptive grids must be used in the finite
volume code, resulting in a cell system with large variations in cell size. Such grids
present a challenge for a combined PDF/Monte Carlo code. In this paper, a new par-
ticle tracing scheme is proposed, in which we introduce the concept of variable time
steps. Using locally adaptive time steps in the integration of particle equations, the
particles’ parameters are updated more frequently in regions of strong gradients than
in those of flat gradients, which greatly improves the time efficiency of particle tra-
cing. To reduce statistical errors, a particle splitting and combination procedure is
also used. The new scheme allows the hybrid finite volume/PDF Monte Carlo code
to use any grid that is constructed in the finite volume code. This relaxation of restric-
tions on the grid makes it possible to couple PDF/Monte Carlo methods to all popular
commercial CFD codes and, consequently, extend existing CFD codes’ capability
to simulate turbulent reactive flow in a more accurate way. The numerical perfor-
mance of the new particle tracing scheme and the solution procedure are illustrated
by considering a turbulent heat transfer problem in a parallel channel and a turbulent
diffusion combustion problem in a cylindrical combustor.c© 2001 Academic Press

Key Words:composition PDF method; Monte Carlo simulation; particle tracing;
unstructured mesh; variance reduction; turbulent heat transfer; chemically reacting
flow.

1. INTRODUCTION

Probability density function (PDF)/Monte Carlo methods have been increasingly used in
turbulent reactive flow calculations [1–3], primarily because the PDF method is able to treat
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some of the nonlinear processes exactly. For example, in the velocity PDF method, the gra-
dient diffusion assumption for turbulent transport is not necessary; in the composition PDF
method, complete treatment of arbitrarily complex finite-rate chemical reactions is possi-
ble; in the velocity–composition PDF method, besides the aforementioned two processes,
the interaction between turbulence and chemical reactions can be considered with ease.
In a class of hybrid numerical methods considered in this paper, the flow field (including
velocities, pressure, turbulent kinetic energy, and the dissipation rate of turbulent kinetic
energy) is solved by finite volume techniques, while scalars such as mass fraction of species
and temperature are solved by the composition PDF method. The hybrid methods combine
the advantages of the finite difference method’s efficiency and robustness in solving the
flow field with the PDF method’s exactness in dealing with chemical reactions. They are,
therefore, increasingly used in turbulent reactive flow calculations.

The PDF transport equation can be derived from the conservation laws. However, the
high degree of multidimensionality of this equation makes conventional finite difference or
finite element methods inefficient for its solution. Therefore, a PDF/Monte Carlo approach
has been developed over the past two decades, primarily by Pope and co-workers [1].
In this method, the PDF is represented by a large number of particles distributed in the
computational domain. Each particle carries flow quantities with it, which evolve according
to stochastic differential equations. Field means of the flow at any point are then calculated
by taking weighted ensemble averages over values of nearby particles.

During the past decade, significant progress has been made in the development of the PDF
method, and its application to various complicated flows has been quite successful. In some
implementations, the method was coupled with finite volume codes [4]; in others it provided
a complete solution on its own [5]. The method has been used from solving homogeneous
shear flows [6] to handling inhomogeneous wall-bounded flows [7–9]. Along with the model
development, the numerical methodology has been improved as well. Haworth and Pope
[10] derived a high-order scheme for the solution of stochastic differential equations; Welton
and Pope [11] introduced the “smoothed particle hydrodynamics” method for calculating
mean fields; Delarue and Pope [12] included the calculation of the pressure field within
the Monte Carlo algorithm; and recently Xu and Pope [13] and Muradoglu and Pope [14]
identified and analyzed different numerical errors that occur in PDF/Monte Carlo methods.

Still, there are several important remaining weaknesses in the method’s numerical metho-
dology. The conventional particle tracing scheme of the PDF/Monte Carlo methods does
not permit the use of cell systems with large variations in size in an economical way, even
though this kind of cell system is essential in many situations, such as capture of sharp
gradients in the flow fields. Conventional methods customarily use a constant time step for
the integration of particle evolution equations, which tends to waste computer time, since, to
capture sharp gradients, very thin cells need to be used in such regions. The time step would
then be dictated by the small cells, leading to an extremely small value, which would have
particles in large cells move only a short distance in a single time step compared to their cell
size. Another complication of using cell systems with large cell-to-cell volume disparities
is the need to control the number of particles over cells. If equal mass particles are used,
small cells will contain too few particles and large cells will hold too many. In variable-
density flows, particle populations over cells become unbalanced even at cell systems with
equal cell volumes. This imbalance makes the particle tracing inefficient because tracing
more particles than necessary in a cell wastes computer time, while tracing too few leads
to large statistical errors (since the error scales as the inverse of square root of the number
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of particles in a cell). This imbalance problem is particularly severe in solving problems in
cylindrical coordinates, in which cells near the axis tend to suffer from low particle counts
because of their small volume while outside cells tend to hold too many particles. In many
such flows, sharp gradients of the flow field occur near the axis, requiring cells to be smaller
still, making things even worse. The imbalance of particle counts has been recognized as
a problem in other types of Monte Carlo simulations as well [15, 16]. The need to control
particle number density has been realized for a while [1], but this issue has been given little
attention in the literature. To date, only a few attempts have been made [17, 18], using the
idea of particle splitting and combination. While particle splitting and combination process
are known to be very effective, possible side effects, such as degradation of the stochastic
system, appear to have been overlooked.

In this paper, we address the shortcoming of the use of a constant time step. Instead of
using a single constant time step in the integration of all particle equations for each particle,
we define a global time step, which is divided locally into several adaptive substeps governed
by the local flow field. The particle properties are updated at the end of each partial time
step. The mean fields are obtained by taking weighted ensemble averages of local particle
properties. To reduce statistical error and to further improve computational efficiency, a
particle splitting and combining procedure has also been used. The possible side effects of
splitting and combining on the stochastic system and the requirements of preserving mean
quantities, such as mass, scalars, or higher moments of scalars, are pointed out.

In the following, we first review composition PDF/Monte Carlo methods and the conven-
tional particle tracing scheme, followed by a detailed description of the new particle tracing
scheme. Finally, two test problems, a turbulent heat transfer problem and a turbulent react-
ing flow problem, are solved to demonstrate the performance of the method in structured
and unstructured grids, respectively.

2. COMPOSITION PDF METHODS AND THE CONVENTIONAL

PARTICLE TRACING SCHEME

For variable-density flows, it is advantageous to work with density-weighted (Favre-
averaged) quantities. Let8

¯
represent physical-space composition variables (temperature

or enthalpy and species concentration). The transport equation of the Favre composition
PDF f̃ 8

¯
can be derived by using the transport equations for8

¯
(i.e., transport equations

for temperature or enthalpy and concentrations). The resulting PDF is generally solved by
Monte Carlo methods. In such a PDF/Monte Carlo simulation, the PDF is represented by a
large number of particles. Each particle can be interpreted as an independent realization of
the flow or as a delta function discretization of the PDF. Every particle evolves according
to a set of stochastic differential equations. Pope [19] has shown that there is a one-to-
one correspondence between particle evolution equations, the modeled PDF equation, and
the modeled Eulerian governing equations for the field means. In the composition PDF
method, location,x

¯
, and scalar quantities,8

¯
, of a stochastic particle evolve according to

the following stochastic differential equations [18]:

x
¯
?(t + δt) = x

¯
?(t)+ [ũ

¯
+∇0T/〈ρ〉]δt + [2δt0T/〈ρ〉]1/2η

¯
(1)

8
¯
?(t + δt) = 8

¯
?(t)+ S

¯
?δt − 1

2
C8(8¯

? − 8̃
¯
)τ−1δt. (2)
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Here the variables with asterisks refer to the location or scalar values of a Lagrangian
particle, variables within an angle brace are conventional means, and variables with a tilde
are Favre mean;ũ

¯
is the velocity vector, and0T = Cu〈ρ〉σ−1

T k2/ε is the turbulent diffusivity,
wherek, ε, σT ,Cu are turbulent kinetic energy, dissipation rate of turbulent kinetic energy,
turbulent Schmidt or Prandtl number, and a model constant, respectively. The termη

¯
is a

standardized Gaussian random vector (components with zero mean and unity variance) and
τ = k/ε is the turbulent time scale. In Eq. (2), Dopazo’s [20] scalar mixing model has been
used, whereC8 is another model constant. Finally,S

¯
? is a source term that results from

chemical reactions.
The above set of particle equations implies the transport equation of a corresponding

Eulerian composition PDF̃g(8α; x
¯
, t) [1],

∂[〈ρ〉g̃]

∂t
+ ∂[〈ρ〉ũi g̃]

∂xi
+ ∂[〈ρ〉Sα g̃]

∂9α
= ∂

∂xi

[
0T

∂ g̃

∂xi

]
+ 1

2
C8ω

∂

∂9α
[〈ρ〉g̃(9α − 8̃α)],

(3)

whereg̃ is the modeled Favre composition PDF,9 is the sample space of the composition
variable8, andi andα are summation indices in physical space and composition space,
respectively. When compared to the exact transport equation, it is seen that the two terms on
the right-hand side of the equation are contributions that result from conditional expectations
of velocity fluctuation and molecular mixing, respectively.

Multiplying the PDF transport equation by the composition space variable9α, followed
by integration over the entire9

¯
space, one obtains the governing equation for the scalar

mean,

∂[〈ρ〉8̃α]

∂t
+ ∂[〈ρ〉ũi 8̃α]

∂xi
= ∂

∂xi

[
0T
∂8̃α

∂xi

]
+ 〈ρ〉S̃α. (4)

In PDF/Monte Carlo simulations, instead of solving the partial differential equation (4)
directly, as is done in conventional moment methods, the particles are traced according to
Eqs. (1) and (2). The means of the composition field are then deduced statistically from the
properties of the particles.

In hybrid finite volume/PDF Monte Carlo methods, some Eulerian quantities, such as the
velocity field, pressure, turbulent kinetic energy, and dissipation rate of turbulent kinetic
energy, are computed by a finite volume code. This information is then transferred to the
Monte Carlo code, which calculates the scalar fields and, in turn, supplies updated values
for density to the finite volume code. An important feature of the hybrid methods is that
some field variables may be solved independently in both finite volume and Monte Carlo
codes. The issue of possible inconsistency has been addressed by Muradogluet al. [14]. The
present solution procedure is completely consistent since no duplicate fields are computed.

The Monte Carlo code involves integration of the set of particle equations and compu-
tation of field means from particle properties. The time step for integration is generally
chosen to satisfy an extended Courant–Friedrichs–Lewy (CFL) condition [13]. For the
two-dimensional case, the allowable maximum time step for particles in celli is

1ti = min

{
k

ε
, Ncfl

1x

|ũ| , Ncfl
1y

|ṽ|
}

i

i = 1, . . . ,n, (5)

wheren is the total number of cells;1x and1y are the control volume sizes in structured
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grids or the maximum span of celli in the x- andy-directions in unstructured grids;Ncfl

is called the particle CFL number (usually taken to be less than 1);k/ε represents the
turbulence time scale; and1x/|ũ| and1y/|ṽ| represent the time scale of a particle passing
through a cell. The time step used in the integration is then

1t = min{1ti , i = 1, . . . ,n}, (6)

i.e., the minimum of the values that are determined by Eq. (5) over alln cells.
Another issue in the PDF/Monte Carlo methods is the estimation of means. Estimates of

mean quantities from particle values are needed to evaluate Favre means, which also appear
as coefficients in the particle evolution equations. Although a grid-free method, called the
“smoothed particle hydrodynamics” method, has been proposed by Welton and Pope [11],
its computational cost is prohibitive for two- and three-dimensional problems. To estimate
field means, generally a cloud-in-cell method is used instead, in which a grid system sits
on top of the computational domain and the means are approximated by averages of values
of the particles in a nearby region. In a finite volume code, the computational domain is
already divided into many control volumes and variables are stored at nodes, the center of
the control volume. Generally, the same nodal system is also used in the Monte Carlo code.
The field means at nodes are calculated from all particles in a region (dependence region)
bounded by the surrounding nodes. The control volume, nodal system, the dependence
region of any node and a particle’s influence region in the computation of field means in
both the structured and unstructured grids are shown in Fig. 1. The field means at nodal
point V can be calculated from

8̃
¯v
= 1

mv

∑
p∈C

bpvm
?
p8¯

?
p; mv =

∑
p∈C

bpvm
?
p, (7)

whereC is a set of particles that fall into the dependence region of pointV ; 8
¯
?
p are the

scalar values of thepth particle;m?
p is the normalized mass that the particle carries (in the

conventional scheme, every particle carries the same amount of mass andm?
p = 1.0); and

bpv is the weight of the particle’s contribution to pointV and is determined by a bilinear
basis function (see Appendix).

FIG. 1. The nodal system used in the Hybrid FV/PDF method and the illustration of adaptive time step
splitting.
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3. NEW PARTICLE TRACING SCHEME

It is apparent that conventional particle tracing schemes, when a cell system with large
cell-to-cell volume disparities is used, either lose computational efficiency if the time step
is small or tend to smoothen out the flow field if the time step is large. We will now
introduce a new scheme, in which the time step for each particle is divided adaptively into
several substeps depending on the local flow field at the particle’s location. And, to gain
better control of the number of particles in each cell, a particle splitting and combination
procedure is designed.

3.1. Adaptive Time Step Splitting and Mean Estimation Method

If a single time step is used for all particles, and particle properties are tallied only at the
end of each time step, some particles may cross several small cells without any contribution
to the cells they pass through. The main idea in the procedure of adaptive time step splitting
is to ensure that a particle in the flow field does not change its physical position too much
or too little in one move in comparison with the cell size in which it resides. The global
time step for each individual particle (i.e., the time step between updates of the global
velocity and scalar fields) is divided into several substeps. Thus, from time levelk to level
k+ 1, every particle experiences a series of moves, for example,A→ B→ C→ D as
illustrated in Fig. 1 instead of just a single move,A→ D′, in the conventional scheme. The
final positions ofD andD′ might be slightly different because of the different frequencies
to update the mean fields and the different Wiener terms in the particle equation. For a
particlep in cell i after the(s− 1)th submove at time levelk, the substep for thesth move
is computed as

1tk,s
p = min

{
k

ε
, Ncfl

1x

|ũ| , Ncfl
1y

|ṽ|
}

i

. (8)

Care is taken that the last substep brings all particles to the next global levelk+ 1. After
the partial time step is set, the set of SDEs for particlep needs to be integrated. Most
PDF/particle methods to date have used a first-order-accurate scheme in time. Recently, a
second-order-accurate predictor/corrector (P/C) scheme has been introduced by Pope and
others [11, 14, 21] and is used here. The predictor step determines the particle’s approximate
location after the integration, with the explicit form

x̂
¯
?k,s+1 = x

¯
?k,s + [(ũ

¯
+∇0T/〈ρ〉]x

¯
?k,s1tk,s

p +
[
21tk,s

p 0T/〈ρ〉
]1/2

x
¯
?k,s η

¯
; (9)

superscriptsk, s, andk, s+ 1 denote values at timetk,s andtk,s+1(= tk,s +1tk,s
p ), respec-

tively. All mean quantities appearing in the coefficients are evaluated at the particle’s initial
positionx?k,s as indicated by the subscript. In our calculations, all mean values are stored at
the vertices of the rectangular (structured) or the triangular (unstructured) mesh. The field
means at arbitrary particle positionO are linearly interpolated from the vertex quantities
of its host cell: ifξ denotes any mean quantity stored at vertices, the corresponding value
at an arbitrary point is

ξO = ξV1bOV1 + ξV2bOV2 + ξV3bOV3 + ξV4bOV4, structured grids (10)

ξO = ξV1bOV1 + ξV2bOV2 + ξV3bOV3, unstructured grids, (11)
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whereξV1, ξV2, ξV3, andξV4 are the mean quantities at the vertices, and the weight factorsb
are calculated from the linear basis function.

In the corrector step, all coefficients involving the field means are evaluated as the averages
of their mean values at the initial and at the predicted location. The corrector step has the
form

x
¯
?k,s+1 = x

¯
?k,s + 1

2

{[
ũ
¯
+ 1

2
∇0T/〈ρ〉

]
x
¯
?k,s

+
[
ũ
¯
+ 1

2
∇0T/〈ρ〉

]
x̂
¯
?k,s+1

}
1tk,s

p

+ 1√
2

{[
1tk,s

p 0T/〈ρ〉
]1/2

x
¯
?k,s +

[
1tk,s

p 0T/〈ρ〉
]1/2

x̂
¯
?k,s+1

}
η
¯

(12)

8
¯
?k,s+1 = 8

¯
?k,s + S

¯
?k,s1tk,s

p −
(
8
¯
?k,s − 8̃¯x∗k,s + 8̃¯x̂∗k,s+1

2

)
C81tk,s

p

τx∗k,s + τx̂∗k,s+1
. (13)

Note that the same value ofη
¯

is used for both predictor and corrector steps, but that different
and independent values ofη

¯
are used for each subtime step. It has been verified that this

P/C scheme is equivalent to the Runge–Kutta form of Milischtein’s general second-order
weak scheme for stochastic systems [11].

Once the particle’s new location is determined, its properties are updated. The field means
are updated at the end of each global time step using, both, the particle’s properties at the
final position as well as those at intermediate positions. The contribution of each submove
is weighted by its time fraction, so that Eq. (7) changes to

8̃
¯

k+1
v = 1

mv

S∑
s=1

∑
p∈C

bk,s
pvm?k

p

1tk,s
p

1t
8
¯
?k,s
p ; mv =

S∑
s=1

∑
p∈C

bk,s
pvm?k

p

1tk,s
p

1t
, (14)

whereS is the number of substeps for particlep between time levelsk andk+ 1; C is a set
of particles, which are found in the influence region of nodeV ; 8

¯
?k,s
p are the scalar values

of the pth particle at thesth substep. Thus, a particle traveling through space interacts with
all cells it passes through rather than only the one in which it ends up at the end of the time
step. In regions with strong gradients, particles update their properties more frequently,
and particles always reflect the local flow field information. With this procedure, there is
basically no upper limit in choosing a global time step for statistically stationary problems,
and the magnitude of the global time step only affects the frequency of updates of the mean
fields.

Strictly speaking, the mean estimation method of Eq. (14) is only valid for statistically
stationary problems, since the particle’s properties at some intermediate time points other
than at(t +1t) are used as well. But for nonstationary problems, if the global time step
is much less than the characteristic time scale of the flow field, this average method is still
valid. If the global time step is not that small, the field means can be calculated by only
tallying particles at the end of one global time step by using Eq. (7).

3.2. Particle Splitting and Combination Procedure

In the particle splitting and combination procedure, the number of particles in each cell
is checked after every global time step. If the number in one cell is less than a prescribed
minimum, a particle splitting process is initiated, and if the number of particles exceeds the
prescribed maximum, a particle combination process is carried out. During this process,
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the particles’ distribution and number may change before and after the particle splitting and
combination procedure, but the two sets of particles should be equivalent in a statistical
sense, and field means (including mass, scalars, and their higher-order moments) extracted
from the particle field should be preserved.

The simple splitting strategy is this: if the number of particles in the cell isN less than the
prescribed minimum, the firstN high-weight particles are split; each of theN newly created
particles carries the same scalar properties as its parent, but only half the mass; both are
placed at the same location as their parent, but evolve independently thereafter because of
the random paths generated by the Wiener process. This approach greatly reduces statistical
error and improves computational efficiency. During this process, the weight of a particle
may be reduced significantly after several splitting events and its contribution to the problem
may become minimal. To avoid wasteful tracing of such small particles, a lower limit of
mass is set below which particle splitting is not applied. It is clear that the above procedure
preserves the mean quantities. However, the splitting process can change the evolution of
the stochastic system afterward, since splitting produces several identical particles in a
cell and a high degree of data dependency may lead to biased results. This would be the
case, for example, if the particle-interaction mixing model [1] were used in the particle
evolution process. If every particle evolves independent of others, this data dependency will
not cause any statistical degradation. In our current numerical implementation, Dopazo’s
mixing model is used, in which particles only interact with the mean fields and, therefore,
splitting does not introduce any side effects.

If the number of particles in a cell is larger than a prescribed maximum, a combination
process is employed. Subramaniam and Haworth proposed a simple scheme [18], in which
low mass particles is annihilated and the mass associated with these particles is distributed
evenly among remaining particles in that cell. Although the method preserves the mass, it
preserves neither mean scalars nor their higher-order moments. Actually, there is a simpler
scheme that can preserve mean quantities. If two particles (x

¯
?
1, m?

1, 8
¯
?
1 and x

¯
?
2, m?

2, 8
¯
?
2)

in a cell are combined into one, the new particle is put at the mass-weighted average
location(m?

1x
¯
?
1+m?

2x
¯
?
2)/(m

?
1+m?

2) and takes the properties of particle 1 with probability
m?

1/(m
?
1+m?

2) and those of particle 2 with probabilitym?
2/(m

?
1+m?

2). This method is used
in this study. In our actual simulations, all particles in each cell are sorted in descending
order of the mass. If the number of particles in a cell is larger than the prescribed maximum
by N particles, the low-ranked 2N particles are combined intoN pairs to obtain the desired
number.

The splitting and combining processes are carried out at the end of each global time step,
followed by renumbering of all particles in the flow field, before the time marching process
continues.

3.3. Particle Tracking in Triangular Meshes

To extract field means from particle properties by either Eq. (7) or Eq. (14), it is first
necessary to identify the host cell where each particle is located. It is a trivial task to
determine the host cell in rectangular coordinates, but the search becomes complicated
when the computational cell is no longer rectangular in the physical domain. A number
of search strategies are possible [22]. The use of successive neighbor searches turns out
to be the most suitable method, considering the fact that particles most likely stay in the
same cell or simply move to one of their neighboring cells after a single time step, which is
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FIG. 2. Illustration of particle tracing in triangular cells.

especially true in the calculation here because of the use of the adaptive time step splitting
technique.

Assume a particle resides in celli with positionO1 originally and moves toO2 after one
time step. To identify its new host cell, three quantities are calculated,

—−→
O1O2 · En(i )1

h(i )1

,

—−→
O1O2 · En(i )2

h(i )2

,

—−→
O1O2 · En(i )3

h(i )3

,

whereEn(i )1 , En(i )2 , andEn(i )3 are the three outward normals of the three surfaces making up cell
i ; h(i )1 , h(i )2 , andh(i )3 are the shortest distances from pointO1 to these surfaces (see Fig. 2),
and the superscript(i ) is used to denote the quantities’ association with celli . If all three
quantities are less than unity, the particle is still in celli ; if their maximum is greater than
unity, this implies that the particle leaves the cell through the surface on which the maximum
is computed. For example, in the case shown in Fig. 2, the second of the above quantities is
the largest and the particle leaves the cell through surface 2. The connectivity information
of the mesh gives the cell number next to that surface, in this case,j . The cell pointer for the
particle is updated to that neighboring cell, and the above three quantities are recalculated
with respect to cellj . This process is repeated until the new host cell is found, i.e., when
all three values are less then unity.

We call this strategy an element-to-element search. In Subramaniam and Haworth’s paper
[18], a face-to-face search strategy is used, in which the time fraction spent in each cell
is calculated. Such information is needed if a cell-center-based PDF code is used (the
field means are stored at the centroid of the cells) and one wants to distribute a particle’s
contribution to all the cells it passes through according to its residence time in each cell.
In the vertex-based scheme with time step splitting procedure that is used in our current
method (the field means are stored at vertices of the cells), the element-to-element search
scheme is more efficient.

3.4. Numerical Performance Prediction

The amount of computational work can be estimated for both the conventional scheme and
the new particle tracing scheme. In the conventional scheme, the amount of computational
work (Wconv) is proportional to the number of total particles used in the simulation (N), the
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number of steps to get to the final result (I1), and the computational work per particle per
step (wp):

Wconv' N I1wp; I1 = t

1t1
. (15)

Heret is the total computational time period, which usually requires several times (M = 2 to
5, say) the residence time (ts), i.e., the time that an average particle needs to travel through the
entire computational domain. The residence time may be estimated asts = l/ũav, where
l is the length of the computational domain andũav is the average streamwise velocity.
Therefore, the estimate of computational work is

Wconv' N I1wp = M N
ts
1t1

wp. (16)

With the new particle tracing scheme, some particles may make several moves in one global
time step, and the particle splitting and combining procedure requires an extra amount of
cpu time (wa) per particle per global step. IfL is used to denote the average number of
moves for a particle to move in one global step, the amount of computational work can be
approximated as

Wnew' N I2(Lwp + wa) = M N
ts
1t2

(Lwp + wa). (17)

To evaluate the efficiency of the new scheme, we consider the ratio of the two and obtain

Wnew

Wconv
=
(

L + wa

wp

)
1t1
1t2

. (18)

In the new particle tracing scheme,L is a function of1t2. It increases as1t2 increases, but
its rate of increase is always slower. As a result, the work ratio is always less than unity for
nonequally spaced grids.

In PDF/Monte Carlo methods, the numerical results are subject to three kinds of numerical
errors: statistical error, discretization error, and bias [21]. Statistical error is unique to Monte
Carlo simulations and is often dominant. The statistical error (6) of a field mean is measured
by its standard deviation, which is proportional to the reciprocal of the square root of the
number of particles in a cell,6 ∝ 1/

√
Nc. In the conventional particle tracing scheme

the largest statistical error occurs in the smallest cell in which the number of particle is
minimum, Nc,1 ' Vmin/VtotalN; in the new scheme, the particle splitting and combination
procedure makes the number of particles in each cell roughly equal, orNc,2 ' N/n, where
n is the total number of cells in the computational domain.Nc,2 is usually much larger than
Nc,1 except in the extreme case of using equal size cells, in which both are the same. As a
result, statistical error by using the new scheme is smaller than that by using the old scheme
if the same number of particles are used.

4. TEST PROBLEMS

Two test problems are used to demonstrate the performance of the new scheme. The first
is a turbulent nonreacting heat transfer problem with incompressible flow and, therefore,
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the scalar solver and flow solver are decoupled. This problem is also used to validate the
PDF code since the scalar field can also be solved exactly by traditional finite volume codes.
The second problem is a turbulent reacting flow problem where a cylindrical combustor is
simulated, in which the two solvers are closely coupled.

4.1. Turbulent Heat Transfer Problem

A simple two-dimensional test problem has been chosen, namely a hot jet flowing through
a parallel duct, in which no chemical reaction is considered. Although the strengths of the
PDF/Monte Carlo methods are not obvious in this simple problem, it serves well to test the
validity and efficiency of the proposed particle tracing scheme.

The geometry and boundary conditions of the problem are shown in Fig. 3. The channel
is 5 m long and 1 m high. A stream of hot fluid is injected near the center at high velocity,
while cold fluid at low velocity is injected at top and bottom. Therefore, in the central region
near the inlet, the temperature decreases rapidly from a maximum in the hot center stream to
a lower level in the cold side streams. This sharp gradient in the temperature profile requires
fine grids and the use of nonequal size grids makes this a good test case for the new particle
tracing scheme.

To obtain the flow field quantities, FLUENT [24] is used as the finite volume code,
solving the Navier–Stokes equations in conjunction with thek-ε turbulence model. For this
statistically stationary and incompressible flow problem, the energy equation is decoupled
from the governing equations for momentum, which allows the energy equation to be solved
independently after the velocity field has been obtained first. The energy equation can be
written as

∂[ρ〈T〉]
∂t

+ ∂[ρ〈ui 〉〈T〉]
∂xi

= ∂

∂xi

[
0T
∂〈T〉
∂xi

]
. (19)

Comparing with Eq. (4), and noting that conventional means are equal to Favre means for
incompressible flows, it is apparent that the PDF/Monte Carlo approach can simulate this
problem with particle equations (1) and (2), if8 is taken as temperature. Temperature field
can be obtained by the finite volume code as well, which has been done to document the
accuracy of our PDF/Monte Carlo scheme.

To resolve the sharp velocity and temperature gradients near the inlet, non-equally-spaced
nodes are used in both coordinate directions. Closely spaced gridlines are laid out near the
inlet in the streamwise direction and around the center line in the cross-stream direction.
A grid system of 20× 30 was found to give satisfactory results by FLUENT, although

FIG. 3. Geometry of the channel and its boundary conditions.
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FIG. 4. Grid system used in the FV and the PDF/Monte Carlo codes.

80× 120 gave grid-independent solutions. Considering that the two results are close and
because of the expense of coupling a PDF/Monte Carlo code with so many cells, in our
calculation, a 20× 30 grid system for this problem is used as shown in Fig. 4. In the present
grid system the volume of the smallest cell is about 3× 10−3 m2, and the largest one is
0.04 m2, with a ratio of maximum to minimum cell volume of about 13. The time step
calculated to meet the CFL condition (1t〈u〉/1x ≤ 0.3) varies greatly from cell to cell,
the allowable time step being only 0.005 s for particles in the center cells near the inlet, but
as high as 0.2 s for some cells near the outlet.

Both the conventional and the new particle tracing scheme are used to find the temperature
field. The number of particles used in a single simulation is 12,000, and 15 similar simula-
tions are run for a total of 180,000 particles to obtain standard deviations of the statistical
mean values. Different sequences of random numbers are used in different simulations to
make sure the results are independent of each other. At the beginning of each simulation,
12,000 particles are distributed throughout the computational domain. After the start of the
simulation, each particle evolves independently. When a particle hits the wall, it is simply
reflected without a change in temperature because of the insulated wall condition. During
each time step, a number of particles will leave the computational domain and, at the same
time, many new ones are introduced at the inlet to maintain global mass conservation. In
this incompressible test problem, the mass density level remains uniform in the calculation,
although the particle number density may change as a result of the splitting and combination
procedure.

In the conventional scheme, the time step used for integration of the particle equations
is dictated by the smallest cell, resulting in a constant time step of 0.005 s for all particles.
In the new scheme, a much larger global time step of 0.2 s is used. A statistically stationary
temperature profile is obtained after approximatelyt = 5 s, which corresponds to 2.8 times
the residence time for both simulations. The temperature profile and its standard deviation
at the centerline and at one downstream cross section are shown in Fig. 5. The results from
FLUENT are also shown in the figure. The results from both schemes give satisfactory
agreement with those of FLUENT considering the relatively small number of particles used
in the simulations. The greatest discrepancy between the particle solutions and the FLUENT
solution occurs near the walls, which is caused by the different near wall treatments in both
approaches.

It takes about 63µs cpu time on an SGI-O200 (270 MHz, single R10000 processor) to
trace each particle for one move. The particle splitting and combining procedure requires
35µs when averaged to one particle for one global time step. In the new scheme, it takes
about 7.1 substeps for an average particle to move one global time step (1t2 = 0.2 s).
Thus, for this test problem, and using Eq. (18), the computational work for the new scheme
should be about 19% of the old one. In an actual comparison, we found that one entire
simulation with the conventional particle tracing scheme required a total of 202 min, while,
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FIG. 5. Computed temperature profile and its standard deviation.

with the new particle tracing scheme, only 38 min were needed, which agrees well with
the predictions from Eqs. (16) and (17) (189 min for old scheme and 36 min for the new,
respectively).

From Fig. 5 it is also apparent that the standard deviation of the temperature field obtained
by the new scheme is much smaller and more uniform over the computational domain. In
the standard method, the average number of particles in a cell ranges from 8 in the smallest
cell to 100 in the largest cell. However, in the new scheme, the average number of particles
in each cell is held around 20, resulting in much better statistics. As a consequence, if a
tolerance of statistical error is to be met, one expects to use considerably less particles in
the simulation using the new scheme than that using the conventional one. To demonstrate
this, the standard deviation of the temperature at one point (1.0 m, 0.5 m), a rather typical
position along the centerline, for different numbers of particles, is shown in Fig. 6. For
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FIG. 6. Standard deviation of temperature at point (1.0 m, 0.5 m) vs the total number of particles. The lines
are the linear fits to the data.

example, if a standard deviation below 5K is desired, this requires 70,000 particles in a
simulation with the old particle tracing method, while the new method needs only 7400
particles.

One of the strengths of PDF methods is that, once the PDF equation for the scalars is
solved, it includes complete information for these scalars, allowing the direct calculation
of turbulent moments and other statistics. To get similar moments or statistics from tradi-
tional finite volume methods, one has to model and solve many coupled partial differential
equations. In this problem, for example, the fluctuations of the temperature field (

√
〈T ′2〉)

can be calculated conveniently, as shown in Fig. 7.

4.2. Combustion Test Problem

Numerical simulation of an axisymmetric combustor is used to further demonstrate the
superior performance of the new particle scheme. The geometry of the combustor is shown
in Fig. 8. A small nozzle in the center of the combustor introduces methane at 80 m/s.
Ambient air enters the combustor coaxially at 0.5 m/s. The overall equivalence ratio is
approximately 0.76 (about 28% excess air). The high-speed methane jet initially expands
with little interference from the outer wall, and entrains and mixes with the low-speed air.

FIG. 7. Temperature fluctuation,
√
〈T ′2〉, for the turbulent mixing test problem.
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FIG. 8. Geometry of the cylindrical combustor.

The Reynolds number based on the methane jet diameter is approximately 28,000. The two
solvers are closely coupled in this case since the PDF solver needs flow field information
from the flow solver, and the flow solver, on the other hand, needs the density field com-
puted by the PDF solver. Consequently, the two codes have to run interactively throughout
the iterative process. One key issue in the hybrid scheme is the passing of information
between the two codes. The PDF/Monte Carlo technique is a statistical method and, hence,
always has fluctuations associated with its solutions. If the level of these fluctuations is
too high, it may cause divergence or other computational difficulties when information is
communicated to the finite volume solver. The application of our adaptive time step splitting
and particle splitting and combination keeps statistical fluctuations low and no divergence
problem was observed in the finite volume code after the updated density field was fed back
from the PDF solver, even for low particle number densities, say 10 particles per cell in
average.

To capture the strong gradients in such flows, a locally clustered mesh or even an adaptive
mesh has to be used in the finite volume solver. Unstructured grids not only provide greater
flexibility in discretizing complex domains but also allow straightforward implementation
of adaptive meshing techniques where mesh points may be added or deleted locally [23].
Many finite volume codes, such as FLUENT [24], allow the use of such unstructured meshes.
Using this capability of the finite volume solver, an unstructured mesh is employed for the
solution of this problem.

Two sets of unstructured meshes, one with 1247 nodes and 2317 cells and the other
with 4753 nodes and 9103 cells, were used to demonstrate grid-independence of the finite
volume solution. The coarser mesh was employed for the solution of this problem in the
hybrid finite volume/PDF MC calculation, which is shown in Fig. 9. Since the diameter
of the inner fuel nozzle is very small, many cells have to cluster near the fuel inlet to
adequately capture the flow field. As a result, the minimum cell area is only 7.3× 10−7 m2

while the maximum cell area is 1.4× 10−3 m2. In cylindrical coordinates, a cell in the
x–r plane actually represents an annulus in three-dimensional space. For this problem, the
total volume of the computational domain is about 4.55× 10−2 m3, and the minimum and

FIG. 9. The unstructured mesh used in the hybrid FV/PDF Monte Carlo method.
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maximum cell volumes are 4.0× 10−10 m3 and 2.0× 10−4 m3, respectively, or

Vmin

Vtotal
= 8.8× 10−9; Vmax

Vtotal
= 4.4× 10−3; Vmax

Vmin
= 5× 105. (20)

In the traditional PDF/MC method, particles of equal mass are used throughout. If
1,000,000,000 particles were used in the simulation, the largest cell alone would hold
4,400,000 particles while the smallest cell would hold only about 9 particles. Obviously,
the traditional method is extremely inefficient in tracing particles in a problem with such
unbalanced control volumes.

While solving this kind of problem by traditional methods may still be possible, although
very inefficient, with a super computer, it becomes completely impossible when the required
time step is considered. A particle entering with the fuel stream takes about 0.0225 s to travel
through the entire computational domain, while a particle from the air stream will take about
3.6 s. In conventional methods, a constant time step for all the particles is used, which is
constrained by the smallest cell region where the velocity is the largest. If such a time step
is used, particles in the large outside cells would move only a tiny distance in each single
time step and the simulation would essentially take forever.

Our new particle tracing scheme with adaptive time step splitting and with the particle
splitting and combination technique can handle this extreme case without any problems.
The number of particles in the computational field is about 46,500 in the simulation, and the
particle splitting and combination procedure ensures that the number of particles in each cell
remains in the range between 10 and 50. The scalar quantities in this problem include five
mass fractions of different species (CH4, O2, CO2, H2O, and N2) and the temperature,T .
To reduce statistical error, the temperature and species fields in the PDF solver are obtained
by averaging their solutions over the previous five time steps. In the entire simulation,
a global time step of 0.004 s is used and 1000 global time steps are taken to reach the
statistically stationary solution, taking about 50 min on an SGI-O200 (270 MHz, single
R10000 processor) to complete the whole simulation.

The conventional way to define residual error in the finite volume method is meaningless
in the hybrid FV/PDF MC simulation because the statistical error is generally larger than
the truncation error. Therefore, the numerical error for any variableφ is defined here as

err=
√√√√ 1

Nv

Nv∑
v=1

[〈φv(t +4t)〉 − 〈φv(t)〉]2

〈φv(t)〉2 . (21)

This error never converges to zero, but rather to a value representative of the statistical
fluctuation of the solution when statistically stationary state is reached. This level mainly
depends on the number of particles in the simulation and on the number of time steps over
which the solution is averaged. If temperature is used to monitor the numerical error, a value
on the order of 10−2 has been reached in the present calculations.

During every global time step, some particles will pass several cells through a series
of submoves while others might just take one move depending on their location in the
computational domain. During each time step, a number of particles leave the computational
domain and, at the same time, a similar number of new ones are introduced at the inlet to
maintain global mass conservation. The new particles are released such that the mass flow
rate is constant for the fuel and air streams and their ratio is equal to the given equivalence
ratio of the fuel. Although PDF/Monte Carlo methods can treat chemical reactions exactly
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FIG. 10. Distribution of mass fractions of CH4 for the combustion test problem.

if correct relations for chemical kinetics are used, here, for the purpose of comparison with
results obtained from FLUENT, an infinitely fast chemical reaction rate is used for every
particle, implying that the global chemical reaction rate is controlled by the mixing process,
which is similar to the eddy-dissipation model in FLUENT. In the simulation, although the
particle number density may change as a result of the splitting and combination procedure,
the particle’s mass density level is always proportional to the flow field density. The contours
for the mass fraction of CH4, O2, CO2 and temperature are shown in Figs. 10–13 (the mass
fraction of H2O has the same profile as that of CO2, when scaled properly, and is not shown).
The results from FLUENT with the eddy-dissipation combustion model are also shown for
comparison, showing that the PDF/MC method and FLUENT give very similar scalar fields.
The slight discrepancies are due to several sources. First, FLUENT’s results depend on the
specific combustion model chosen in the simulation and are always approximate. Although
the infinite reaction rate assumption has been used in the PDF/Monte Carlo calculation to
create a similar situation as that in FLUENT, the two combustion models are not exactly
the same. Second, the simple mixing model used in our PDF/Monte Carlo method also
leads to some numerical errors. Finally, PDF/MC results always have fluctuations, and the
number of particles used in our simulation is quite low for this complex problem and a
much smoother solutions can be expected if more particles were employed. While further
improvements can be made in these areas, the main focus in this study is on the development
of a solution procedure.

As in the previous test problem, the fluctuation of the scalar fields can be computed within
the PDF solver conveniently. Contours for equal fluctuations√

ỹ
′2
CH4
,

√
ỹ
′2
O2
, and

√
T̃′2

are shown in Figs. 14–16.

FIG. 11. Distribution of mass fractions of O2 for the combustion test problem.
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FIG. 12. Distribution of mass fractions of CO2 for the combustion test problem.

FIG. 13. Distribution of temperatures for the combustion test problem.

FIG. 14. Distribution of methane concentration fluctuations,

√
ỹ′2CH4

, for the combustion test problem.

FIG. 15. Distribution of oxygen concentration fluctuations,

√
ỹ′2O2

, for the combustion test problem.

FIG. 16. Distribution of temperature fluctuations,
√

T̃′2, for the combustion test problem.
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5. CONCLUSIONS

To capture sharp gradients in a flow field, cell systems with large variations in size
have to be used, which makes conventional particle tracing schemes in PDF/Monte Carlo
methods very inefficient, resulting in large statistical errors, or even making them incapable
of handling this kind of problem. A new particle tracing scheme has been proposed, which
saves computer time and reduces statistical error. A locally adaptive time step has been
developed for the integration of particle equations, which ensures that each particle changes
its location neither too little nor too much in a single move, by comparing the move to the cell
size in which the particle resides. The properties of the particles are updated at appropriate
frequency during their evolution in physical space. To reduce the statistical error of mean
quantities, a particle splitting and combination procedure was also used. With this procedure,
the number of particles in each cell is maintained at a prescribed level. As a result, statistical
errors of the mean fields are much less than in the conventional scheme, leading to more
accurate results with the same number of particles. Numerical experiments were performed
on two test problems. The first simple test problem with mildly varying cell sizes showed a
reduction in cpu time by a factor of 5, with a concurrent decrease in statistical error by almost
one half. The second problem, with extreme cell size variations, common in combustion
applications, could not be solved using conventional methods, while a solution was found
with ease using our new method.

APPENDIX: LINEAR BASIS FUNCTION b

If point o is in cell i (see Fig. 17), then the linear basis functionb is calculated in the
following way.

• In rectangular meshes,

bo1 = f g; bo2 = (1− f )g [A.1]

bo3 = (1− f )(1− g); bo4 = f (1− g), [A.2]

where

f = x2− xo

x2− x1
, g = y2− yo

y2− y1
.

FIG. 17. Sketch of grid.
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• In triangular meshes,

bo1 = 1O23

1123
, bO2 = 1O13

1123
, bO3 = 1O12

1123
, [A.3]

where1123 and so forth, are the area of triangle 123 and its subtriangles as shown in Fig. 17.
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